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It is observed that  the manifestly covariant Feynman path integral formula- 
t ion for quantum electromagnetism admits a physically interesting extended 
definition for the sum-over-histories measure. From an equal-weighting 
condit ion and the postulate that the functional integration is to be free of 
renormalization, it follows that point singularies in the electromagnetic 
field have an electric charge associated with the fine-structure value ~ = 
(137.032 41) -~. 

In the manifestly covariant path integral formulation for the quantum 
theory of electromagnetic radiation, the Feynman sum-over-histories for the 
probability amplitude is given as 1 

K(~2, ~) =-fc e~StmD[A] (1) 

in which (natural units: h = c = I, e 2 ~ 4~r/137.036) 

s o2 F~v -- ~.A~ - 0vA, (2) S[A] = 5 f  d4x, ~ ~ l .t ~ l~v, 
1 

Here ~ and ~2 denote flat three-dimensional spacelike hypersurfaces orthog- 
onal to a timelike constant unit vector n. (n~nv = - 1), and C is the class of  
continuous A = [A0(x), A~(x), A2(x), Aa(x)] through the space-time volume 
which yield prescribed values for 

Bu~ = -B~. =- F.v + nun~Fpv + n~nDFuo (Burn ~ -- O) (3) 

1 For  recent reviews and applications of the Feynman formulation see Papadopoulos 
and Devreese (1978). Renormalizat ion with displacement-invariant measure is dis- 
cussed and employed in the present author 's  paper in this volume, pp. 201-235. 
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over ~1, e2. The state of the quantum radiation field is a complex-valued 
functional of the three independent components in the tensor (3) (i.e., the 
magnetic field components for n, = 3,0). Displacement invariance of the 
measure in (1), 

D[A] - D [ A  + 3A] (4) 

for arbitrary continuous 3A that vanish over el, ~2, insures gauge invariance 
for (1) and produces the operator field equations 

cOuFU~(x)e~SEAJD[A] = 0 (5) 

as well as the commutation relations and time-ordered product formulas for 
the radiation field. For the explicit evaluation of (1) it is necessary to introduce 
a space-time lattice A(A) with point separation distance 1, a lattice generated 
through the four-volume by translations of a normalized vierbein with n, 
the timelike member. Over this space-time lattice, the action and measure in 
(1) are represented as 

S[A] -- 
xeA(h) xGA(h) 

in which ~~ 1) is the finite-difference correspondent of the Lagrangian in 
(2), W = W(1) is the appropriate normalization constant, and the t-7--0 
limit is understood to be taken as the final step in the calculation. 

To incorporate processes involving electric charge-carrying particles, 
the correct procedure is to add AuJ"  (depending on other fields) + (kinematic 
terms for the other fields) to 5e, as in quantum electrodynamics. This extension 
yields an accurate theory for processes involving photons and Ieptons but 
affords no explanation for the value of the fundamental unit of charge e. 
In the unified field theories for the electromagnetic and weak interactions 
(Weinberg, 1967; Salam, 1968 ; Georgi, 1974; Hsu, 1976), connection formulas 
between e and the more primary coupling constants are derived. However, a 
unified-theory connection formula does not preclude the possibility that the 
value of e is already fixed in the context of a complete theory for quantum 
electromagnetism, in which the field itself controls and determines the admis- 
sible strength of its point singularities. This is of course an old and aesthetic- 
ally appealing idea, but we now know that it cannot be realized in Nature by 
a nonlinear Lagrangian in place of ~ :  the linearity of the operator field 
equations (5) is in strict accord with the experimental supposition property 
of electromagnetic radiation, and the accurate theory for processes involving 
photons and leptons is based precisely on s and the associated action given 
in (2). 
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Because the action in (1) is experimentally ironclad and unalterable, the 
only thing that may be amenable to an extended definition is the measure. 
Let us consider a defining condition on the measure somewhat weaker than 
the unrestricted displacement-invariance condition (4) of radiation theory. 
Specifically, let (4) hold only for 8A(x) = •(x)  8~:(x), where 8~:.(x) denotes 
an arbitrary continuous infinitesimal four-vector that vanishes over el, e2 and 
where 5P(x) = lima_.0 X#(x; A) is computed from the field history A in (4) by 
S ( x ;  A) - ~ ( x ;  ~) 

E' - �89 A~(x + Au(o)A.(x + Au(s))AV(x + Au(~))Av(x + )tu(,)) (7) 
i ,],k,l  

Restricted to x and its nearest spacelike neighboring points in the lattice, 
the summation in (7) involves 7 four-vectors: u(0) -- (0, 0, 0, 0) and u(~) for 
i = + 1, + 2, + 3 defined by the conditions nuu~) = 0, u(_~) = -u(~), u(o.u~})= 
8~ s [which give uS) = (sgn i)3p for n. = 80.]. The ~'  summation in (7) is 
required in order to exclude third and fourth powers of any component 
of A at a lattice point, and also terms with the dominating structure 
A"(x)A.(y)A~(x)A~(y) for a pair of lattice points; the latter terms must not 
appear in (7) for a realizable constraint on the measure without renormaliza- 
tion (Friedricks and Shapiro, 1957), because 5r ,~) is composed exclusively 
of terms bilinear and square in components of A at lattice points. Thus, by 
definition, with the i = j,  k = l, and (i, j )  = (k, l) terms excluded, there are 
7.6(7-6 - 1) = 1722 -- N '  terms in the ~ '  summation. In the case of a field 
history such that 5P(x) = 0 at a certain x, we have admissible 8A(x) = 
S ( x )  8~(x) = 0 and (4) is satisfied trivially for 8~:(x) concentrated at the 

point x. The measure is as given in (6) but with . #  - 7 (A )  + ~4~(~) x [Dirac 
8 function of s A)]. 

Now by making a replacement of the dummy integration variable in (1) 
A --> A + 8A and subtracting the resulting equation from (1), we have 

fc  (e~SEA~D[A] - e~s~+~ + 8A]) = 0 (8) 

for arbitrary 8A. Evoking (4) specifically for 8A = s with 8~: arbitrary 
through the interior of  the four-volume, (8) yields the operator field equations 

fc  SP(x)a.F"V(x)e~StA~D[A] = 0 (9) 

The latter are the quantum correspondent of  the classical field equations 

~ ( x ) a . F - ( x )  = o (lO) 

which follow from (2) and the variational principle 8S[A] =- S[A + 8A] - 
S[A] = 0 for 8A = $8~ .  Equation (10) admits charge-current point singu- 
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larities with 8.F"~(x) proportional to a three-dimensional ~ function in the 
spatial coordinates only if ~ ( x )  = 0 at the point. Thus, by (7), the condition 

!Fray r' z ~  ~,~ + N ' ( A " A , )  2 = 0 (11) 

is required to hold at a point singularity. By the usual association, field 
histories with point singularities contribute constructively to the functional 
integration in (1) only if the field history satisfies (11) at the singularity points. 

Of the possible relations between A, and F,v at a point singularity, (I I) 
(with N '  fixed appropriately on the classical level) is unique in that it alone 
holds for a point charge moving in an unrestricted way with arbitrary 
acceleration (Schiff, 1969). This is immediately verified by substituting the 
Wiechert potentials for a point charge in arbitrary motion into (11), a test 
which other possible relations between A, and F,v fail. Condition (11) is also 
invariant under the 15-parameter group of conformal coordinate transforma- 
tion (McLennan, 1957; Rosen, 1972). The value N'  --- 1722 emerges here 
with equal weight given to the terms in (7) and for the ~' summation that 
keeps the functional integration over A well defined without renormalization. 
By substituting the general Wiechert potentials into (11) (or more simply, 
the specialized solution A, = (e/4zrr)3,o for a point-charge at rest at the 
origin of the spatial coordinates), we obtain the electric charge values e = 
+4Tr/(N') 1/2 = +0.302 826 09 and the fine-structure constant value ~ = 

e2/4~r = 4 z r / N ' =  (137.03241)-L The small difference between the latter 
theoretical and the current experimental value may be due to a calculable 
radiative effect? 

This theory for quantum electromagnetism does not impose any con- 
straint on the motion of its point charges. To describe the motion of the point 
charges, additional terms must be added to ~ in the usual manner. 
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2 At the present time we have aexp = (4~r/N')[1 - �89 + 0(as)]. 


